A Miniature Probe for Ultrasonic Penetration of a Single Cell

نویسندگان

  • Ting Wu
  • Zhaoying Zhou
  • Qun Wang
  • Xing Yang
  • Mingfei Xiao
چکیده

Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM) and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Miniature Cone Penetration Test (Mini-CPT) to determine engineering properties of sandy soils

In-situ testing techniques have proven to be successful in improving the speed and reliability of geotechnical investigations. One of the most common in-situ methods in engineering geology and site investigation is Cone Penetration Test (CPT), which is mainly used for characterization of soils, as it is a robust, simple, fast, reliable and economic test that can provide continuous soundings of ...

متن کامل

دورگه‌سازی در محل؛ اصول و کاربردها : مقاله مروری

In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

The effect of low intensity dual frequency ultrasonic waves on the viability of the B16-F10 melanoma cell

In this study, the effect of single and dual-frequency sonication on cell death of B16-F10 melanoma cells is investigated at constant temperature. Here, 20 groups were studied. The test groups consisted of: control and sham, 40 kHz (intensity: 0.24 W/cm2), 1 MHZ (intensity: 0.5 W/cm2) and the dual frequency groups which each frequency group included seven subgroups of 30, 120, 60, 150, 300, 600...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009